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Abstract

As Computer Vision becomes overwhelmingly popular for real-time
use cases, edge devices such as micro-controllers and low-powered em-
bedded systems are increasingly being used for inference on deep learn-
ing vision models. To meet strict memory and energy requirements,
lightweight architectures such as MobileNetV2 are commonly used to
fine-tune on specific subdomains of larger datasets. This paper inves-
tigates the benefits and drawbacks of using advanced data augmenta-
tion strategies (Mixup, CutMix, RandAugment) when applied to an
ImageNet-100 subset. Experimental results show that ablation-based
training achieves slightly lower accuracy (83.50% at epoch 30) com-
pared to classical fine-tuning (84.96% at epoch 28) whilst requiring
more epochs to converge. With inference efficiency staying constant
between both models, results show that the increased cost at train-
ing introduced by ablations does not provide improved performance
at inference. These findings suggest that, for smaller datasets and
resource-constrained models, classical fine-tuning remains more effi-
cient compared to ablation-aware techniques.

1 Introduction

Whilst deep vision neural neural networks achieve high accuracy with the
flexibility to infer across a large class, due to the heavy memory require-
ments, this is infeasible on edge devices. MobileNetV2 is a widely used
vision CNN optimised for mobile/embedded inference which is optimal for
fine-tuning with smaller subsets on the larger pretrained dataset. However,
in scenarios where only limited subsets of data are available, fine-tuned mod-
els risk overfitting and may not generalise effectively.



To address the shortcomings of smaller datasets, ablation-aware augmen-
tation strategies have been proposed, including Mixup, Cutmix and Ran-
dAugment. These methods aim to improve the robustness of a model by
synthesising a derivative of the training data which reduces overfitting by
making memorisation harder thereby forcing the model to learn the general
features of the data instead. Due to the nature of such techniques, models
trained with ablations tend to converge slower and reduce accuracy during
earlier epochs of training.

Ablation-aware techniques have been shown to provide benefits in accu-
racy in larger models with longer training operations however their effects
on smaller architectures and datasets remain less clear. Furthermore, their
significant computational expense during training raises further questions
about their practical and real-world value with inference on edge hardware
in mind especially when fine-tuned models rarely fit on the smaller memory
sizes and thus are quantized before deployment which is shown to cause
further accuracy losses.

In this work, we explore the effectiveness of ablation-aware fine-tuning
compared to classical methods on a custom ImageNet-100 subset. Using
MobileNetV2 as our architecture, we will evaluate the validation accuracy of
both approaches. By viewing our results in the context of edge deployment,
we aim to provide an insight as to whether the added computational expenses
of augmentation are justified in light of its use in constrained environments.

2 Method

We investigate the effect of fine-tuning MobileNetV2 on a custom ImageNet-
100 subset using different augmentation methods. Our goal is to evaluate
how classical fine-tuning compares to ablation-aware fine-tuning in terms of
accuracy for edge deployment.

We define a single training sample as (x,y), where x € RW>*H#*C ig the
input image and y is its corresponding one-hot encoded label. The model
is represented by a function fy, and the loss function is £ (in this case,
cross-entropy).

Classical Training

In classical supervised training, the model learns by minimising the loss on
individual, unaltered training samples. For each sample (x,y), the objective



is to minimise the loss, calculated as:

L lassical = ‘C(fQ(;U)? y) (1)

The model’s parameters, 6, are updated by minimising this loss over the
entire training batch. The key point of importance here is that the input x
and label y are used directly without modification.

Mixup

Mixup(I)) creates new virtual training data by linearly interpolating two
different samples from the training batch. This encourages the model to
learn smoother decision boundaries. Given two random samples (z;, y;) and
(xj,v5), a new sample (Z, ) is generated as:

T=Ar; + (1 =N, (2)
g=2Ayi+(1—=Ny; (3)
Here, the mixing coefficient A is sampled from a Beta distribution, A ~

Beta(a, ), where « is a hyperparameter. The loss is then computed on this
new virtual sample:

Emixup = [,(f@(fi), g) (4)

CutMix

CutMix(2) also creates new samples from two training examples. However,
it cuts a random rectangular patch from one image (z;) and pastes it onto
another (z;). The labels are then mixed proportionally to the area of the
patch. The new sample (Z, ) is generated as:

T=Moz;+(1-M)0ox, (5)

Here, M € {0, 1} * is a binary mask indicating where to drop out pixels
from x; and fill in with pixels from z;. 1 is a mask of all ones, and © is
element-wise multiplication. The new target label is a weighted combination
based on the patch size:

g=yi+ (1 =Ny (6)

The mixing ratio A is determined by the area of the cutout region. The loss
is calculated on this composite sample:

Leutmix = ﬁ(f@('i')a Zj) (7)



Rand Augment

RandAugment(3)) does not combine multiple samples. Instead, it applies a
sequence of N randomly selected data augmentation transformations with
a magnitude M to a single image. For a given sample (x,y), the augmented
input z is created by applying the transformation sequence T

#=Tyu(@) =Tn(... To(Ti(z))...) (8)

Where T}, is a transformation selected uniformly at random from a prede-
fined set. The crucial point is that the label remains unchanged:

y=y 9)

The model is then trained on this heavily distorted sample that preserves
its label:

ﬁrandaugment = E(f@ (-%)7 y) (10)

Training

The Adam (Adaptive Moment Estimation) optimizer was used with Ir =
1 x 1073, The scheduler was set to cosine annealing, batch size was 128 with
mixed precision enabled via torch.cuda.amp. The accuracy and loss were
computed on the validation split after each epoch.

3 Results and Discussion

Epoch Classical Ablated

1 71.10 67.02
5 76.10 72.40
10 79.06 76.46
15 81.76 78.46
20 84.04 80.90
25 84.68 82.86
28 84.96 83.38
30 84.84 83.50

Table 1: Validation accuracy (%) per epoch for classical fine-tuning and
various ablation methods.
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Figure 1: Validation accuracy per epoch for classical and ablation methods.

In the data we can see that the model trained with ablation-aware tech-
niques was slower to converge and ultimately resulted in a lower valuation
accuracy after 30 epochs of fine-tuning. However, throughout the train-
ing, the ablation-aware approach yielded better generalisation due to the
smaller validation gap between training and valuation data. We can also
confirm this as whilst the model with augmentation kept improving albeit
at a lower rate, classical training plateaued early which indicated stronger
generalisation with augmentation.

Accuracy-wise, ablation-aware techniques underperformed compared to
classical training as using augmentations on the smaller dataset size likely
served to make the supervision signal noisier. Whilst this works to increase
generalisation in bigger datasets, in our case there was too little training data
to get to the point of overfitting and thus failed to learn strong class-specific
features quickly which is critical to the performance of small datasets.

Furthermore, MobileNetV2 is a relatively small model and thus has a
lower capacity however the aggressive augmentations implemented in our
training cycle demand that the model has enough parameters to decode



noisy signals and extract the significant class boundaries which it failed to
do.

In smaller models and datasets like ours, Mixup is likely to struggle
as it assumes class linearity in creating mixed labels however with smaller
datasets, the scale required to make meaningful augmentations of different
samples is unlikely to be present. CutMix also assumes locality of dis-
criminative features - such that cutting/pasting preserves features used to
identify class boundaries - however in smaller datasets, the effects of these
assumptions failing is drastically accentuated.

4 Conclusion

In this work, we evaluated the effect of augmentation-based ablation strate-
gies and their effects on inference accuracy and evaluated this with regards
to the increased computational overhead that is introduced with such tech-
niques and their deployment on resource-constrained edge devices. Our re-
sults showed that classical fine-tuning marginally outperformed the ablation-
aware approach on the ImageNet-100 subset, reaching a higher validation
accuracy after 30 epochs. We attributed this to the small dataset size and
the limited capacity of MobileNetV2 which is likely to have accentuated the
noise introduced by the aggressive augmentation techniques.

Nevertheless, ablation-aware techniques were able to produce models
that had stronger generalisation and so were likely to be more robust in
real-world use which is often much more important especially in use cases
where edge devices are used. The small trade-off in accuracy is justified
by the much greater gains in regularisation. Whilst these results show that
ablation-aware techniques do not always provide immediate benefits in accu-
racy, it is still important to acknowledge their effectiveness in larger datasets
with longer training operations.
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